How AI is reinventing what computers are
What does that mean? Well, computers haven’t changed much in 40 or 50 years. They’re smaller and faster, but they’re still boxes with processors that run instructions from humans. AI changes that on at least three fronts: how computers are made, how they’re programmed, and how they’re used. Ultimately, it will change what they are for.
“The core of computing is changing from number-crunching to decision-making,” says Pradeep Dubey, director of the parallel computing lab at Intel. Or, as MIT CSAIL director Daniela Rus puts it, AI is freeing computers from their boxes.
More haste, less speed
The first change concerns how computers—and the chips that control them—are made. Traditional computing gains came as machines got faster at carrying out one calculation after another. For decades the world benefited from chip speed-ups that came with metronomic regularity as chipmakers kept up with Moore’s Law.
But the deep-learning models that make current AI applications work require a different approach: they need vast numbers of less precise calculations to be carried out all at the same time. That means a new type of chip is required: one that can move data around as quickly as possible, making sure it’s available when and where it’s needed. When deep learning exploded onto the scene a decade or so ago, there were already specialty computer chips available that were pretty good at this: graphics processing units, or GPUs, which were designed to display an entire screenful of pixels dozens of times a second.
Anything can become a computer. Indeed, most household objects, from toothbrushes to light switches to doorbells, already come in a smart version.
Now chipmakers like Intel and Arm and Nvidia, which supplied many of the first GPUs, are pivoting to make hardware tailored specifically for AI. Google and Facebook are also forcing their way into this industry for the first time, in a race to find an AI edge through hardware.
For example, the chip inside the Pixel 6 is a new mobile version of Google’s tensor processing unit, or TPU. Unlike traditional chips, which are geared toward ultrafast, precise calculations, TPUs are designed for the high-volume but low-precision calculations required by neural networks. Google has used these chips in-house since 2015: they process people’s photos and natural-language search queries. Google’s sister company DeepMind uses them to train its AIs.
In the last couple of years, Google has made TPUs available to other companies, and these chips—as well as similar ones being developed by others—are becoming the default inside the world’s data centers.
AI is even helping to design its own computing infrastructure. In 2020, Google used a reinforcement-learning algorithm—a type of AI that learns how to solve a task through trial and error—to design the layout of a new TPU. The AI eventually came up with strange new designs that no human would think of—but they worked. This kind of AI could one day develop better, more efficient chips.